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ABSTRACT

In the past two decades since the advent of Kalman's recursive filter,
numerous afgorithms for linear estimation have emerged. Most of these algo-
rithms are recursive and rely on solving a Riccati equation or equivalent
recursive equations. It will be shown how some of the classical problems such
as Linear Smoothing and Recursive Block Filtering problems can be solved
exactly by some new nonrecursive algorithms which are based on the Fast Fourier
Transform (FFT). Moreover, these algorithms are readily modified to generate
the Riccati matrix at specified times, if this is desired. These results are
then extended to a block filtering algorithm, where data is received and
smoothed recursively block by block. Real time batch processing applications

include image processing and array processing of signals.
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1. INTRODUCTION

In the past two decades since the introduction of Kalman's recursive filter
[1,2] several surveys of this subject [3-5] have exhibited different algorithms
for the same basic filter. For example, Ho and Lee [6] use a Bayesian approach,
Rauch et. al. [7] utilize a maximum likelihood principle, Meditch [8] uses a
projection theorem, Kailath [9] employs innovations, and Lainiotis [10] uses
the partition theorem to rederive the Kalman filter.

The conventional Kalman approach [1] involves the propagation of a state
estimate and the error covariance matrix from stage to stage. Other approaches
include the filtering algorithm by Fraser [11] which is based on finding the
information matrix. A family of square root algorithms which recursively
compute the square roots of the covariance matrix or of the information matrix
is associated with Potter [12], Dyer and McReynolds [13], Schmidt [147], Kaminski
and Bryson [15], and Bierman [16]. The Riccati equation plays a major part
in all of these algorithms. Recently, Kailath [17] and Morf et al. [18],
developed filtering and smoothing algorithms in which the Riccati equation is
replaced by the computationally advantageous Chandrasekhar equation.

After Kalman proposed the filtering algorithm, the smoothing problem was
subsequently solved in the state-space time domain by Carlton [19], Rauch [20],
Bryson and Frazer [21], Rauch et. al. [17], Meditch [8], Mayne [22], Anderson
et. al. [23], and many others,

The numerous algorithms that have been derived are mostly recursive in
structure and rely on solving the Riccati equation or equivalently the Levinson-

Trench normal equations [24] associated with the solution of Toeplitz equations.




In this report we present some new algorithms for fixed interval smoothing,
solution of Riccati equations, and block filtering problems that arise in linear
estimation theory for discrete, time-invariant systems. These algorithms have
several interesting features which make them attractive in the context of modern
digital signal processing. These algorithms are non-recursive, fast and are

based on the Fast Fourier Transform (FFT). For example, for ARMA models,

typical recursive algorithms require O(nZN) operations, while the new algorithms
which utilize the FFT need only 0((logzN+n)N) operations to smooth N+1 samples
of an n states, single input single output ARMA system with N >> n. Moreover,
our algorithms seem to be less sensitive to round off and truncation errors,
Finally since these new algorithms utilize the FFT and are non-recursive, they
could be used to process large data batches efficiently in parallel, and would
be well suited for VLSI architectures.

The smoothing algorithm developed here does not require solving the Riccati
equation so that one is not confronted with the associated numerical problems
such as insuring the positive semi-definiteness of the error covariance matrix
e.g., as in the square root algorithms. It is shown that the optimal smooth
estimate can be represented as a sum of two components. One component is the
output of a Wiener filter with discrete frequency response. This Wiener filter
is associated with a steady state periodic system which is observed for one
period., The other component, called the boundary response, is determined
completely by certain initial and terminal values of the observations and the
Wiener filter output.

Even though the Riccati matrix is not required in our smoothing algorithms, it
plays a fundamental role in a large number of problems. Many times it is desired
to find the steady state solution of the Riccati equation associated with a

linear, time-invariant system. In some situations, the given system is over-
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sampled with respect to the Nyquist rate, e.g., in radar systems, where the

signal being observed may be a narrow band signal but the receiver bandwidth
is much larger. Hence it may be desirable to obtain the Riccati matrix at the
Nyquist rate, i.e., at equal lags of time. In section 5, it is shown that a
minor modification of the smoothing algorithm yields the Riccati matrix at {
several instants of time via our FFT approach.

With the advent of array processors and array scanners, data is often

received in blocks, batches, packets, arrays or lines., Hence it is desirable

to consider filters which operate sequentially on blocks of data. Such filter {
structures have been considered in digital signal processing for convolution of
a long sequence of data with a finite impulse response (FIR) filter. We

introduce a new so called Recursive Block Filter. As the name suggests, this

filter smoothes the data non-recursively within a block and recursively from

block to block. Suppose the measurements are received in blocks of N+1 samples.

One is asked to find the optimal smoothed estimate, Qa. ?;. .- i& for i = 1.2....
given the observations, z, for k = 0,1, ... iN where i denotes the ith block

of the data shown below.

Block ¢ N
Ist !
'

It is an on-Tine filter in the sense that if one treats a time-block as

a unit or a packet of time, then one is asked to find the filter estimate ;ili

where i denotes the ith block, or packet. It is also observed that this filter

is similar to the fixed lag smoother, except that the lag of this filter is over

© ———

non-overlapping samples.

This recursive block filter smoothes data block by block and can be




implemented on-line, while preserving the nice properties of smoothing as well

as all the foregoing advantages of the new algorithms. Also this recursive

block filter has the same computational complexity as our new smoothing algorithm,
In fact, by combining the techniques of the smoothing algorithm and that of calcu-
lating the Riccati matrix at equal lags, one easily realizes the recursive

block filter,

Applications of the recursive block filter can be found in communications
and telemetry where the fixed lag smoother is known to be useful, in image
processing where a block of data is available at one time, and in digital on-
line deconvolution of finite impulse response systems. Often in practice, a
discrete time-varying system is modelled as a piecewise time invariant system.
The recursive block filter can be extended to such models easily by simply
applying our algorithms to successive time-invariant blocks.

Qur results utilize the fact that the fixed interval smoother, Kalman filter
and the associated Riccati equation can all be imbedded into a fundamental
boundary value problem. In Section 2 we show the reiationship of the various
filters to their parent boundary value problem. In Section 3 we review the
permuted controllable canonical form of state variabie models which we use to
develop our algorithms in Sections 4 and 5. Section 6 contains additional
remarks. The smoothing algorithm for a special case is derived in Section 7,
This provides a good introduction to the main ideas of the general derivation.

This section also contains some numerical examples.




2, THE FIXED INTERVAL SMOOTHER

Consider the following discrete, time invariant system:
(2.1) X1 T Aék + Bek ]
(2.2)

z, = Cx, + U .

where X € Rn, eke;Rm, zke_Rp, and A, B, C are constant matrices of appropriate
dimensions.

Assume that {ek} and {nk} are independent, zero mean, Gaussian, white 1

Baied

processes with covariances

Ty o
Ele e ] = K8 o

and

) T4 _

=0 if k # 2 and §

where § 1. Also Xg is a zero mean Gaussian random

(394 k,k
variable of covariance QO which is independent of {ek} and {nk} .

The fixed interval smoothing problem for this model consists of finding
the best mean square estimate 2k of Xy for k = 0, ... N, given all observations
Z)s k=0, ... N.

This problem is equivalent to maximizing the conditional probability

P(gklzo, ... 2y) for all k.

Applying Bayes rule and noting that all random variables are Gaussian, we get

[e.g., 26,27] the problem of minimizing

N N
2 1 s 112 1 2
R PSR A

—

J =518

subject to the state equations(2.1) and (2.2), where ||-||A denotes the norm

induced by A. Using Lagrange multipliers this can be transformed into the




following unconstrained problem
3+ ) Al X ]
min + A X - Ax, - Beg, ] .
€ R k=0 k+1 52k +1 =k k

The first order necessary conditions are obtained by differentiating with respect

to Xpr € and Ak+1:

T,-1 A T _
(2.3) N - CR Uz ~ X)) - AN, =0
-1 T -
(2.4) K'e, = B'A4q =0
(2.5) Xee1 = Aﬁk + Bek

for k=1, ... N.
Substituting (2.4) into (2.5) results in

A _aa T _
(2.6) X1 = A5k + BKB xk+] s, k=0, ... 4 N
and rearranging (2.3) we find

_ AY Ty-1 A _
(2-7) >\k - A )\k+] + C R (Zk - Clk) Y k = 0, cee 9 N
where, in the boundary term for ¥ = 0
-]A T ..] ~ T _
QO 50 -CR (zo - clo) - A A-l = 09

we have defined AO & 06120. For k = N we find AN+1 = 0. Thus equations

(2.6), (2.7) and
(2.8) Xy = Qg » Ayey = O
define a two point boundary value problem which is equivalent to the original

smoothing problem,

A standard approact to solving the smoothing problem is by constructing

P




the smoothed estimate as a combination of a forward and backward filter [22].

! Forward Filter:

_ T T T, _ 4
(2.9) Rk+1 = ARkA + BKB' - GkaGk, R0 = Q0 .
?
!
i (2.10) Ske = Ask + Gka[zk - Csk]; Sg = 0
: where
: _ T _ T,-1
G, = ARkC and He = [R + CRkC 1. q
‘ Backward Filter: j
. T T T 3
(2.11) Xk =[I -C¢C HkCRk][A Ak+1 + CR (zk - Csk)] 1
1
AN+1 =0 ’
i Then the smoothed estimate is given by
(2.12) X = Rk)\k + Sk *
Remarks
i) This method is commonly referred to as the two sweep method.

ii) Here Rk is the solution of the matrix Riccati equation (2.9), and Hy is
the covariance of the error (zk - Csk).
iii) The s, obtained from (2.10) is the one step predictor E[xk+]|zn,2 < k]

which arises in Kalman filtering.

it
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3. REVIEW OF THE PERMUTED CONTROLLABLE CANONICAL FORM

The computations required in solving boundary value problems like (2.6) -
(2.7) are simplified significantly when canonical forms are used. We will
concentrate on the use of the permuted controllable form [28], but other cano-
nical forms like the permuted observable form can also be used.

In the following brief review it will be assumed that the system
(3.1) Xeel = Agk + Buk
(3.2) z, = ka
is controllable, i.e., the controllability matrix

(8, AB, ... A" 'p)

has maximal rank. The smallest positive integer y < n such that the matrix

M, = (8, AB, ... AY"1g)

has maximal rank is called the controllability index. Then the permuted control-

lable canonical form can be expressed as

NP I R
. . 2 . :
(3.3) - 10 \P] el g,
Y- : 0
e A e A ’ij [LHJ
(3.4) 2, = Cxy

where we assume rank B = m without loss of generality. Here the matrices

p; are projection matrices of order riXrize and ri S Tiee This can be viewed

as a vector ARMA model.

We will now describe the change of coordinates from (3.1) -~ (3.2) to




(3.3) - (3.4) defined by the transformations

K=pAp), B=pBQ, T=cp! |
and
X = Py
Ek = Qu

The exposition follows [28]:

Step 1: Formation of the Controllability Matrix

(3.5) Cy = (8, AB, ... A"'B] .

Step 2: Choice of Linearly Independent Vectors

From CM, a set of n independent vectors, forming the matrix U, are

selected as follows:

(3.6) U= [b] b2 bm Ab, Ab2 Abm

th

where bi is the i column of B.

Step 3: Formation of State Transformation Matrix P

From U'], a selection of rows, e, for i = 1, ... m is then made, each
row corresponding to the last vector in each group of bi' Then the
transformation matrix, P, is obtained by multiplying the set of the

rows being selected by A, that is




e ————— e ¢ g

-10 -

(3.7) P=1e,

Step 4: Formation of A, PB and C

As discussed before, A and C can be calculated from

KE=PAPpP!
T=cp
while
T 0 0 07
i X o X
0 0 0
PB= * 0
X 1 X
0 0 0
0
X X 1

Step 5: Formation of Input Transformation Matrix

The transformation of input requires finding the matrix




-1 -

X1 x ..

Q= | "

LXXX..

A i ——— b e e e -

; the matrix PB.

Step 6: Formation of B

B=pBQ

Step 7: Permutation of States

Example:

i -4 4]

0 0 0 10
1 0 -8 0 -4 0 0
A= 01 -5 0 -1 B = 0 0
00 00 O 01
00 01 4 00
L . .
L The controllability matrix, U is found as

_ 2 -
U-[b] b2Ab]Ab2Ab]] -

F] XX o oW x-

« X

1

O o O o —

o —~ O O O

O O O — O

0
1

— O O O O

where each successive row of Q corresponds to the non-zero rows of

Having found the inverse of Q, B can be computed from

The final form of the system is obtained by permutation.

! . To illustrate the procedure, an example is given below:

Assume the original system has the A,B,C, matrices as follows:

1T -4 10

-1 1 01
-

0

0

1

0

0




and

Because Azb] and A
e] and e, are chosen to

The transformation

[

and

-12 -
1000 0
0001 0

v'=1 01 0 0 0
000 0 |
001 0 0

b2 are the fifth and fourth columns respectively,

1

be the fifth and fourth rows of U ' respectively.

matrix, P, is computed next as:

e] _ -
A 0 0 1 0 0
0 1 -5 0 -1
e]Az = 1 5 17 1 2
0 0 0 0 1
€2
000 0 1 4
e5A -
J
8 51 4 1
5101 0
pl=] 1000 0
000 11
00071 0

After the transformation, the system has the A, C matrix as:

o 1 0 0 o0 |
0 0 1 0 0O
= | -4 -8 -5 -4 -3
0 0 0 0 1

0 0 0 0 -
L




|
-13 -
~ 1 10 2 1
C=1.4 9100 0
while —_ —-
0 0
0 0
PB=| 1 -1 |
0 0 |
0 1

A further transformation of the input vector will yield the desired

system matrix B as:

-1 _

o

1}

o

o=

oL

[l
O O - O O
- O o O O

where

L] o]

The final step is done as follows: Let the states of the transformed

system be labelled as:
— i I .
X, = K1) %p(2) x4(3) 1 xa(1) xe(2)1"

Therefore by permutation three subgroups will be formed.

They are:

. T
R ) | 7@ Ree))

x
-~

t
x| 1
F
~~~
—
e
LA N}

The system will have the form of




- 14 -

"~ ]-! -~ n"]-} o= -
k4] ol1 o010 oT Xy 0 0
~ 0oto o0}1 o0 -2 0 0
Xk+i| = ojlo olo0 1 Xkl + 10 o Jk
5 3 -4 .8 -4 1i-5 -3 53 1 0
K Lodo oo v )Y o1
v 2 o 17~
k T Xk
L~4 =1 0 0 0

Therefore in this example

= 10
| P, ol 0],P2_A[ J

>
>
S

-~ 4] + ., [-8 - - -5 -3]
A . K, B N
1 [o] 2=1o o] 3‘[0 -

o)
—
tlD
t
[ ]
-
o
~N
o>
p 1
ot -t
(O (2]
-
O
w
>
—
o o
o i

For the case of a single input, single output system, the transformed

A, B matrices are more simple, and will take the following forms:

[on 0 0
A= 0\1 B
a]az L an ]

The method to find the transformation matrix, P, in this case is slightly
different and is given as follows:

Let the characteristic polynomial of the matrix A be

n-1

A(r) = Det(AI-A) = A" + q

i ]A

* L N ) + + L
N R

A"']B] and the coefficients
-1

! . Then from the controllability matrix [B AB ...

of the characteristic polynomial, the inverse of the transformation matrix, P




is found as

= [a; 9, ... q,]

where

Iy © Aqn * N9 = AB + a1B

YA
+ azqn = A B + a]AB + azB

|
>
0

: - an-1 n-2
q] - qu + anqn = A B + G]A B + sse + an_]B

Notice that there is no need to perform any permutation on the

the transformed system is already in the desired form.

- . Lxmper e s s -

————— ki, " “ = —

states since

prERT




4. THE SOLUTION OF A TWO POINT BOUNDARY VALUE PROBLEM VIA THE FFT
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Now we
with the fi
problem is

5}
(4.1)
XY

(4.2) l :

with bounda

where QO’ Vg and w are assumed to be specified. The problem (2.6) - (2.8) in

controllabl

Avey = 0

and bltock filter algorithms are derived. The Pi are projection matrices and

C=(Cs -

For convenience we define Im to be the identity matrix of order m, P0 4 0,

p

We wil

of the m dimensional vectors Xy rather than the n dimensional state vectors

xg. It fol

(4.3)

Applying (4.3) recursively results in

&y
v = I KT Xe AT A

turn to the method of solving the boundary value problem associated
xed interval smoother. The following two point boundary value
considered.
NG [5‘7 [0\'“ \
1o 0 py-] :Y ‘ M 0 - :Y
e A A Jl_l_lk l_o...ox A
AJ] 0 ,q A1
=0 U ; s cTR(z-0g) k=0, ool N
\ N7 T y
v
Ml L0 Py Ay ] LR e
ry conditions
Xo = Qodo * Ho
and
ey =W

e canonical form 1is a special case with the choices Mg = 0 and

These general boundary values are needed when the Riccati matrix

. CY) will be partitioned accordingly.

A A 0 A A A A
8y 5 g A A
A, = A A = 0 for all k, K§+] = —Im, CY+1 = 0, and C0 = 0.

1 now discuss how the problem (4.1) - (4.2) can be solved in terms

lows from (4.1} that
Xiea] = Piﬁlﬂ for i <y,
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(4.4) 541( = E'ixk-'Y""i for i < Y » k 2 Y'i

where !

For later convenience, this expression will be extended to all k > 0. This
can be done by using (4.4) as a definition for Xg» when 2 < 0. The

result is an equivalence class of vertors for which

e h —— o t—tnag - - & S s
-,
[ &)

'l=5

XO 1X_,Y+.i, 1<y . 1

Note that this is only a convenient notation, and does not mean that the

original model 1is extenacd backwards in time,

s ahia dhhias

A
From (4.1) we get the T2st component vector §I+] = Xpq4p 05

_ i
(4.5) Xee1 © ig] Aiék * ka+1
Using (4.4), AY+1 = -Im, and A, = Aipi’ where PY = PY = Im, this becomes
(4.6) X4 = iz RiXieoyei * K
or after solving for Ak+1:
.1 Y
(4.7) Aay = K iz] RiXgoyais 0 € ks N1

Similarly, equation (4.2) can be expressed componentwise as

i_ T T d-1, .
(4.8) Ak - Ai)\k_ﬂ + Pi-]_x‘k"'] + fk 'Y 1= ]’ oo Y

0~ s A To-1 ‘s
where Ak = 0 by definition and fk CR (zk-C5k) is partitioned as

i _ ATp-1
(4.9) £ = GR (zk-Cﬁk)




I’ — ~0
(4.15) l_{ Azxkﬂ =7, 1 <k < N-vy.
==Y
Here
~ Y
(4.16) A, = 0. for 2 20
2 j=£+] J=2,J
and
~ _ =T
(4.17) A2 = A-l fore <0 .
. avdntubinbieios . SR

!

- 18 -
or in terms of X| as
i _ A T,-1 =
where C& = Cjﬁj‘ Applying (4.8) recursively we obtain (see (A3))
vilog . i
N R y-i
(4.11) Ay = i%o A _Arisr ¥ Pyoifiai) -

Substitution of (4.7) and (4.,10) into (4.11) results in

y=1 v+l 0
(4.12) 1-}_1 jL Dy i, j k-yejri = Zk o 1 € K S Ny
where
~ =T -1% To-1= ~
(4.13) Di,J = A]K Aj + ClR Cj ; CY+] =0
and
y=1
~0 _ =T =1
(4.]4) Zk - iZO C‘Y-'iR Zk+.|- »

After an index transformation {see (Al)), it is possible to collect terms

involving Xj4gq 35




1f we write out (4.15) for k =

~

(’A_ A
Y
(4.18) i_
0 v'

By putting the first and last y subvectors

1,

0

a perturbed block Toeplitz system:

A...A 0.7 X1
(4.19) A_Y\\ A,
_O Ay A X
where I (A_Y..- AqT y
= - N s X
[_o N
_'Y-
If we also define
X
12

then the boundary conditions lead

(4.20)
and

(4.21)

where 3" and 2t depend on the observations
(also see Section 5). These equations can

system involving x,, ... XN-y

and

Y

¢

7%t

n

only:

... N-y we obtain the system

50
1

~0

Zn-y

on the right hand side, we obtain

*N-2y+1
xN_Y

to equations of the form (see appendix)

and are defined in the appendix

be used to convert (4.19) into a

R
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Acoh o0 s 1 Ta 1 [e@® ox'+s‘)
.0 Y\\\\ ] ]
~ - )
(4.22) | A A . = . + . i
'Y\ L : 0 -
% T =1, lat | st [
10 AL R | vy | | Iy LE (TO7HT'R" + 2 ) | .
; |
In order to solve this perturbed block Toeplitz system via the FFT, it will be f ¥

rewritten as the perturbed block circulant system i

.~ o t
(4.23) Hx =z + J¥| 7, -
X Do
| ]
where ; 1
I i B
Ay A Ayo oA_Y.. ;?_1 |
A 0 N %
.~170 ~Y |
-~ . )|
H=| A, \\\\\ éY ;;
-~ Z s
A
o N ‘ |
- ~ ~ - .
Ay oA A, Ay
—J «
~0 E(GO)']‘1
X-I Z-l QZ
~ A ‘ “ A ¢ 0
X = TS I Pl T,40,-14t
T
W | g | F0)
Fec® 16 | -
l_ImY 0 £(6) £
1
J= ’ 0 0 | and ¥
T T,.0y=1.1
L0 1rmr [ E ENT)

Eqn. (4.23) is solved in two stages. First the 2my boundary terms

A
;t
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are determined, and then g_can be obtained by circulant deconvolution [28].
When (4.23) ismultiplied by 3T we get

-1

(4.24) b=3%W"2+ 3w or

(4.25) b= [Ty - JH 15T 2

Finally, x is obtained from (4.23) and (4.25) as

(4.26) x = H2+ H 1w .

Eqn. (4.25) requires inversion of only a Zmyx2my matrix; H']z_is a circular

deconvolution that can be determined via the FFT. Once b is known, then (4.26)
gives x easily. Since J¥b is a sparse vector containing only 2my non-zero
entries, H']JWb can be computed either directly if 2my<<logsz or via another

FFT based circular deconvolution.

Remarks
There is an alternative to the approach presented which transforms
(4.15) into a perturbed block Toeplitz system by extending the coefficient

matrix to a square matrix:

- N 0,7 s 7 .
F.AO' Ay 0 X1 21 ,_g
A ) :
_Y *
S (R (el .10
A N-y
Y O i - N 2Y+]
0 A A 0 0A
L -y of L] | J -v Ao "N i

The dimensionality of the system increases, but if N is a highly composite

number there may be advantages in speed when the FFT is computed.

.
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5. ALGORITHMS
Initialization
The proposed algorithm to solve the two point boundary value problem and

other related problems will now be stated. We start by summarizing the definitions of

the necessary quantities.

2 2, z 2
X S XE s A = AL, Py O,PY L
Y+l -Im : CY+1 =0
r Xyl ) ] XN-y+] N-2y+]
% 2 L N L , w2
XO B xy_‘ XN XN-Y
. Y1 o~ o~
pi N jEi Pj » Ry T A1 i? Ci B Ci i

Note that 51 contains only zeros and ones, and thus products with ﬁi as a

factor are not implemented as matrix multiplications.

A 5T~ =T,-1
Di,J = ALK ﬁj + C5R CJ
FO,,Q, = F."o 0 s F1+1’2’+] = T,I,l D'i+],9,+] N 0 < 1’9/ < Y‘]
PR =T -1
Ay = Ty-2,y Ay-QHK » 052 gy

A AT for Yys2s0

H = block circulant matrix of order N-y whose first row is

~ ~ -~

(Rgs Ays oo As 00 a0y Ay et Ay)
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~

P | Toa-1l o =
S 2 d1ag(P], cee ﬁY)Q0 d1ag(P] ceus PY)

& rasangsT 5Ty -1
and let S = [diag(Py, ... P)Qy']

0 ifi>2®

1"y

(0 ... K), Vi+1 - [ViAT], where the V; are mxn matrices.

w.,;V?-CTR-] ’ i = 09 coe Y-]

|
: X ) . | |
: FO,j = Fi,y+] =0 3 Fi+]’j - Fi,j+] + wicj for 0 < 1 < Y » 1 < i<y
’ -_' . o . i i -1
| 0 2 jej * Py IF 1 <3 o ymin
i, ,
| Fi.3 otherwise
0
0 Jj < y-i¥
T:li . = K.‘ j = -Y_-i+'l
sJ N joytiel B |

i Ai-y+j - RZI wi'1+j-Y-2C2 otherwise
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Find the inverse of the block circulant matrix H, and then perform the LU-

decomposition of

& =1 - JTH']JW

2mry

(i) Algorithm for the Boundary Value Problem (Figure 1)

Step 1: Perform the FIR filter operation on the observations z, to obtain the

Kk

sequence v-1 ]
~0 i S
Zv= ) C_.R'z. ..

k j=0 Y-l k+J

Step 2: Extract the initial and terminal variables 21 and Et:

51 2 ki] o RV A8 1, s 1 <k g
kK = L k-j Zj Llo kK < <Yy
j=0
b kel
z, jZO Weoia1Zneg ¥ Vidney 3 T s kg
Step 3: Compute
0y-1-1
. E(G) "z
P - { 1=20+ 2

’Z_'
L ET(TO)']zt
Step 4: Perform the block circular deconvolution
Z

Step 5: Find

Step 6: Determine the estimate x as

17wb

x =y +H

by circular deconvolution.

LU UL ST NI

e

PP PR PR
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Step 7: Determine the boundary value estimates

MPIUR F R L)

(ii)  The Fixed Interval Smoothing Algorithm

If we let Mo = AN+1 = 0 in Fig. 1, we arrive at the fixed interval
smoothing algorithm. The observations are passed through an FIR filter with
impulse response Ey+k = E$+kR-}’ -ysk<0. The resulting signal {zﬁ} plus
{ZE} is deconvolved by H'] which s a circular convolution with the elements
of the first column of the inverse of the block circulant matrix H (see
Appendix B), Boundary elements of this filter output are extracted by the
projection JT, multiplied by boundary filter gain Wé_], and then injected into
a larger vector, which is again deconvolved by H'1 to obtain the boundary
response yE. The final estimate X is obtained by summing the responses Yy and y:.
(i1i) Algorithm for Solving the Riccati Equation via the FFT

The Riccati matrix Rk {see (2.9)) can also be found from (4.,1), (4.2),
if it is only desired to compute RN+1 for fixed N. To derive this method,
suppose z) = 0 for all k. Then (2.9) implies that S = 0 for all k. If we
set A, = €:s the ith unit vector, then (2.12) implies that

XNe1 T Rnerey o
i.e., the ith column of RN+1’ and hence the matrix RN+1 can be obtained as
solution of the following matrix version of (4.1), (4.2):

- T . =
(51 Koy = Al + B8y 3 Xg = Ol

_ AT _ Tp-1 =
(5.2) Ay = A My C'R cﬁk ’ AN+1 In

[T

P PEPE TP

[PRSNPDR IR VAT
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T

(5.3) R = AEN + BKB' .

N1 T X

Thus, RN+1 is the response of a boundary value system excited by an impulse

I“ at the terminal boundary. As a result, the foregoing algorithm for solving

such boundary value problems can also be used to construct the Riccati matrix

RN+] columnwise.
Conceptually, it appears that n consecutive vector boundary value problems

have to be solved. However, there are some significant simplifications which

reduce the problem to solving one circular deconvolution problem of size O(N)

and one matrix_inversion of size 2my. The steps 1 through 7 given above are

replaced by the following steps obtained by setting z, = 0 in the main alaorithm,
In the following we will use uppercase variables to signify the fact that X, A,
etc. are now matrices.

Step 1: Extract the terminal variables

o=Vl =V, ]

Step 2: Determine the terminal y submatrices 7% of the block vector Z
7t 8 eT(r0)-13t |
Step 3: Compute the block vector JTX as

0
7'y = JTH']J[ zt]

PR

Note that only the boundary values are needed in the sequel, hence direct con-

volution may be more efficient than circulant deconvolution via the FFT. The

1

order of JH 17 is (2my) x (2my). i

Step 4: Find the boundary values

B=olJly

- T,-1
where ¢ = [12mY - J'H 'Jv] as before.




it d
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ot

X' .
Step 5: Recall that B = [ » S0 the last components Xt are obtained from
X

X = O+ (1071t (see (4.21))

Step 6: Using (4.21) and the elements of Xt we can obtain lN’ the state
estimate at time k = N. This gives RN+] via (5.3). This algorithm is illustrated

in Figure 2. Steps 1, 2 and 3 above are equivalent to circular convolution
S5t
22, .
only the boundary values of the output Yk' The FFT algorithm is needed only

of the matrix sequence [0, 0, ..., O, 7%, N Z:’] with [H_]]k and extracti

once to compute [H']]k,which are the matrix block elements of the first column

of the block circulant matrix H'1. Assuming that the systems in steps 4 and 5

0

are solved by LU decomposition, and the LU decompositions of » and T~ as well

1 1

as the matrices 7T and JTH' J are precomputed, the computational effort for

obtaining R will be approximately 6n3, and does not depend on the number

N+]
N which compares favorably with the direct recursive method (2.9) - (2.10)
which has a complexity of O(an) when A is in the given canonical form. The
savings are even more dramatic, when the algorithm is used to compute
RQ(N+])’ 2 =1, ... L, since only the matrices ¥ and ¢ will have to be updated
at each step. We will elaborate on this point when we discuss a recursive block

filter in the next paragraph.

(iv) Recursive Block Filtering

As an application of the ideas presented so far, we turn to a recursive
block filter, i.e., a filter which smoothes one block of data at a time.

This will be an approximation to the global smoother, and can be used
more readily, when data is only available in blocks, or when a time variant
system is modeled by piecewise time invariant systems.

The block smoother operates just like the global smoother, except for the
initial conditions. If the blocks are indexed by r, then the initial covariance

for the block r is RN+1,r—1’ assuming the block size is N, where RN+1,r—l denotes

e Ts Ak 2k At A e
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the Riccati matrix. The initial value ;O r also has to include the one step

predictor SN+T -1 from the block (r-1). Thus, the block filter is of the form

- T
(5.1) Xa,r T Azk,r + BKB lk+],r
LT T,-1 .
(5.2) 5k,r = A Ak+],r +CR [Zk,r b Cék,r]
(5.3) 5O,r : QO,rAO,r * Hp 3 AN+1,r =0,

Q,r = Ruer,r-10 Br = Shat, el
This algorithm uses the two algorithms previously described recursively.

Step 1: Set r = 1, initialize the parameters by setting Q0 1" QO’ SN+1.0 = 0.
For block r, process the data using the boundary value algorithm for (5.1)-(5.3).

Step 2: Find the solution R of the Riccati equation at the end of the

N+1,r
u ! data block using algorithm (iii).
| Step 3: Update the following matrices:
Q,r+1 = Rue,e
: - -
Hpal T OSNHLr T A-3<-N,r' ]

0
then use Qo,r+] to update G, ¢, and V.
Step 4: If all blocks are processed, stop, otherwise set r = r+1 and go to
Step 2.

This algorithm is illustrated in Figure 3.
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6. REMARKS AND COMPUTATIONAL COMPLEXITY

a) We note that the above smoothing algorithm is nonrecursive and does not
require the solution of a Riccati equation or equivalent recursive computa-
tions such as the solution of Toeplitz systems via Levinson-Trench type
algorithms [24,25].

b) From Fig. 1 the smoothing filter output X, can be written as

- b4 o b
(6.1) X =Y YY) T Xt
(6.2) X0 8 [H“i"]k, x't: & [H"zb]k + yE

The solution component {xﬁ} could be considered as the FFT Wiener smoothing
filter output, which is obtained by first sampling the Wiener smoothing
filter output in the frequency domain followed by its inverse Fourier
transform. The frequency domain Wiener filter equation is obtained by
considering an infinite duration filter in the steady state. Specifically,

the steady state, dynamic system equation can be written as

(6.3) Xk - lg] AgXky#2-1 = ka1

(6.4) 2 g CoXkoyrn * Mk
where kg(-«,»), and

(6.5) Xw) = T xexp(-jkw)

=00

denotes the Fourier transform of {xk}. Then the frequency domain Wiener

filter estimate Xo(w) for the smooth estimate of Yk is

(6.6) ) = [CHwRTcw) + 5] ()17 erw)R™ 2(w)




where Sx(w) and R denote the power spectrum densities of Xy and M

respectively, * denotes the conjugate transpose, and
(6.7) Clw) = 1{1 ¢ expl-3 (v-2)u]

The quantity S;](w) is obtained from the state equations (6.3), (6.4) as

- Y vEl oo
(6.8) s~ w) = I AK

« = ﬁkexp[j(k-z)w]
k=1 2=1

Now defining

(6.9) H(w) = C@R'Cw) + S5 (W)s ) = CH)R'2(0)
we can write (6.6) as

(6.10) H(w) X% (@) = 7%w)

which gives the discrete Fourier transform of (4.12) at w = 291

n=2=0, ..., N=y-1.

Thus if we sample (6.6) at w = 2%1 ,n=0, ... M1, i.e., let

pd _ 2 2nT

Z(w) = nZO an(m - T)
M-

Xo(w) = Z §°6(w - -2—{;—“)

n=Q "

in (6.6), and take the inverse Fourier transform, we obtain the solution

of the circular deconvolution problem defined by

X =112 for M= Ney

;- P




- 34 -

Moreover, it is easy to verify that {xﬁ} and {En} are the M step inverse discrete
Fourier transforms of {xi} and {ik} respectively, and could be implemented
via FFT.

c) If the system is not controllable, but remains observable, the above algorithm
can be modified by working with a canonical observable model. Details are

left to the reader.

d) The algorithm given above is based on an extension of a method of inversion
of banded Toeplitz matrices to banded block-Toeplitz-matrices [29].

e) In the special case of single input systems, the dimensionality is signifi-
cantly reduced. Moreover, the block circulant matrix # becomes a symmetric
circulant matrix, and thus also the Fourier transform of the first row

of H will be real, which reduces the number of operations.

Computational Complexity

We discuss separately the initial computational effort, which can be

computed off-line. Secondly, we address the complexity of the data processing.
Assume the input dimension is m, the state dimension is n, the output dimension

! is p.

Initial effort: (let M = N-y)

(1) Find k™! and RV in m + p3 op.
(2) Find K']Aj, R']Cj in n(m2 + p2) ops.
-1 T,-1 +
(3) AIK A GR'C (p3 + m3)Y—(32ﬁ—]l ops.
(4) vy matrices Vi are needed 2ym3 ops.
7 (5) F requires 2ym3 ops.
i . (6) Set up vy in %(my)3 + * )m3 + %my3 - %1

- g e e T ——————— o —————

- . —— .
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(7) Find the LU decomposition of [I - J'H'7¥] nglli - 2%1

(8) Find H™! 2nZMlogM + Mn®

(9) Ty 8y°m> operations

Total: M(2m2109M + m3) + m3(1 + %gy3 + 13%21) + mn + np2 + Eflélill»_ mry

Data Processing

Steps 1,2 Nnp + yzmp ops.

Step 3 4(my)? ops.

Step 4 2nMlogM + Mn’ ops.

Step 5 2+ (2my)?

Step 6 2mMlogM + an ops.

Step 7 4(my)2 ops.

Total: Nnp  + AmMlogM+2Mne + 16my?

These operations are for the controllable canonical form. Additional operations
are required for transformation of the system parameters and state estimates

if the given system is not in this form.
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7. EXAMPLES

Example 1: To illustrate the general ideas of the derivation of the smoothing

algorithm via FFT we consider the special case of (4.1) - (4.2) where m

vy = 1 and the covariances K, Qo’ and R are identity matrices.

(7.1) Xpal = Axk + M

T

- T =
(7.2) A = Adgg * C(z-Cx)s k=0, ...

with boundary conditions

Xq = AO and AN+1 =0 .

When (7.1) is solved for A4 and the expression is substituted into (7.2)

we obtain
_ a7 T
(7.3) X, = Ax,_y = A (xk+]-Axk) +C (zk-ka), k

We can collect terms to get

TpeeT 4T 3
(7.4) Axy_q t (HATAC Oy - Alx g =

If we define

Aq a8 (alaecTo) , A

then we can write the resulting system (7.4) for k

“— O

SN ‘on "z
(7.5) |0\ ‘\\\\ N Al BE
Ay Ag I_

L AR

Z0 *
L

By putting the boundary terms involving Xg and Xy on the right hand side we

obtain the perturbed block Toeplitz system

-, B el o <

], "o

N-1

N-1 as

50 _ T
zk =C zk
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~ ~ I ~0 ~
[ o Al\\\o X 2 'A-1xo-1
(7.6) A_]\ i] : = . + 0
. . 0
Y 0 £
O AL T Ag | Xy 2y Arxy

Now X0 and Xy can be eliminated by applying the boundary conditions,
The initial condition Xg = Ao combined with (7.2) leads to

(7.7) Xg ATap + CT(ZO-CXO) )

(7.1) can be used to eliminate A
- aTiy o Te, _
(7.8) Xy = A (x] Axo) +C (z0 Cxo).
Collecting terms we obtain the initial relationship
T

Tasnl _ AT
(7.9) (I+A'A+C C)x0 = A Xq + c 24

which is clearly uniquely solvable for X0 in terms of X1 and z4-

The terminal condition AN+] = 0 combined with (7.2) leads to
_ 7
{7.10) XN = C (zN—CxN) .

(7.1) can be used to eliminate AN:

_ AT
(7.11) Xy AxN_] =C (zN-CxN) .
Collecting terms we obtain
T _ T

which is again uniquely solvable for XN in terms of XN-1 and z
Thus (7.9) and (7.12) can be used to eliminate X0 and XN in (7.6): et
& I+CTC, then

Gy I+ATA+CTC and T

0

————ae




A, K 0 "
(7.13) | A A]

51T T
-A_1Gy (A'xy+C zp)
0
0

_— ZN)J

T'](Ax

Mo

Finally, this problem can be rewritten as a perturbed block circulant system:

(7.14) H

! g

. = z_+ Jy (]
%
—~

XN-1

-
J

-A G C z,

1%
0
0
-1

CT

-A T

T ~
A A, ‘]
-1
-A]TO A_,

X
letting b = |rx] } we can first solve for the boundary term b as

N-1

(7.15)

b = JTH-lA T,-1

2+ 3 gy .

This is a system of order 2m. Finally the components Xo ees Xy_p CanN be

obtained via FFT as
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Example 2 (A detailed solution of Riccati Equation)

Suppose the Riccati matrix R8 has to be evaluated for the following systems

parameters:

0 1 0
A= -1 -1.2 -1.3 K= [

[-2.1 -2.2 -2.3

C-= [1 01 ] s Qo =

i.e., this is a system with two inputs and one output. Note vy = 2 here.

o O -
o — O
- O O

We obtain

N 13.69 6.627 _ 7.02 9.33 R
Po=1| 6.62 898 A =113 2.30|°*%=|0 0

r7.41 0 5.8 7.13
HP-|0 1 0 0
5.82 0 13.69 6.62
| 7.13 0 6.62 8.98
-1 -2.1 0 0
A 0 0 0 0
-7.02 -9.33 -1 -2.1
L-1.3 -2.3 0 0
1.2 1.3 1 0
70 - 3.2 2 0 2
- .2 0 -1.2
| -2.3 2 0 -2.3




- 40 -

ro o 4 0
. 0 0 -2.1 0

10 -2 -1.3
| -2.1 0 -3.2 -2.3_‘

The first block row of the block circulant matrix H'] is obtained as

: H_1:=[ .594 -.181 -.124 -.479 .059 .081 .,059 -.077 -.124 -.003]
] -
' L] 4

-.181 .65 -.003 .134 -.077 .045 .081 .045 -.479 .13
PHI
.983 -.008 -.004 -.009 .071 0.000 -.,202 -,031
.024 1,029 .001 .002 -.119 0.000 -.752 -.051
.050 .041 1,007 .014 -,000 0.000 .152 .022
-.008 -.009 .001 1.000 .001 0.000 .142 ,089
.256 .188 .024 .051 1.070 0.000 .105 .09
-.003 .08 -.002 -.004 .020 1.000 .058 .035
-.714 -.897 -.114 -,239 -.160 0.000 .811 -.199
143 .19 .064 .134 -,069 0.000 -.093 .912
PSI
!
! 4,462 5.639 .704 1,478 1,000 0.000 7.020 1.300
! 5.639 7.232 .875 1.837 2.100 0.000 9.330 2.300
‘ .704 .875 .116 .243 0.000 0.000 1,000 0.000
1.478 1.837 .243 .511 0.000 0.000 2.100 0.000
1.000 2.100 0.000 0.000 1.057 0.000 2.766 1.217
‘ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
7.020 9.330 1.000 2.100 2.766 0.000 10.477 3.153
1.300 2.300 0.000 0.000 1.217 0.000 3.153 1.429
Finally,

[ 2.302 -3.903 -6.789
Rg = | -3.903 8.948 13.787
-6.789 13.787 24.976

Example 3: (Computation of a Riccati Matrix)

e —————— . — i e

This example illustrates the advantage of the FFT method over the two

! . sweep method with respect to roundoff propagation. The systems parameters are
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0 1 0 0 0
A= |0 1 1(,B=1|10
N2 -5 12 0 1

-
C-= 1 01 ] s
L

i 05 0 0
k= |10 LR=.16,Q.=(0 .01 0
0 .49 0
L0 . 0o 0 .09

This is an unstable dual input single output system.

a) When the FFT method is applied with N = 7 we obtain

2.3035 1.5797 -10.807
Ry = 1.5797 2.7446 - 6.2513
-10.807 -6.2513 70.4289

R16 & R8’ i.e., this is approximately the steady state solution.

b) The two sweep method gives

1,988 1.307 -9.250
R, = 1.307 2.248 -4,667
| -9.250 -4.667 67.520

[ 2.166 1.494 -10.156
Re = 1.492 2.677 - 5.825

5
| -10.175 -5.821 67.380
[ 2.018 1.531 - 9.788
Rg = 6.157 3.538 - 24.617

L41.746 3.024 -139.93

6

R]3 contains elements of order 10”7, which shows the divergence of this

method due to instability.

TR 1

TP g SN PRSP S
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Figure 4 shows the evolution of the element Rk (1,1). The equally spaced
dashes show the sampled values using the FFT approach, and the other line
shows the unstable behavior of the recursive method. Note that the line had

to be clipped.

Example 4: (Smoothing and Recursive Block Filtering)

The following two examples illustrate solutions to the linear smoothing and
recursive block filter problems. The performance of the filter is compared for

different block sizes. The following system parameters were chosen:

[}
]
-
3
n
n
-
©
n
N

Example 4.1: m

A e A )

(see figures 5-8).

Example 4.2: m=1,n=2, p =2

A e A SRR B RN F

(see figures 9-12).

?
a
f
|
%
z
!
E

Note that the variances of the noises are considerably higher in Example 4.2.
For both examples the results are presented in the same format. The solid
curves display the exact values of the states Xy = 5k(2),and the dotted curves
refer to the estimates. Thirty data points are shown in each case. The
following table contains the pertinent information. MSE refers to the mean
square error between the exact and estimated values. Figures 7, 8 and 10, 11
are recursive block filters with different block sizes. Motice that the block

filter estimates are quite close to the larger interval smoothing filter

estimates.
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Example 4.1
Figure number of number of block size MSE
observations used blocks
5 51 1 51 .4497
6 30 1 30 .7448
7 30 2 15 1.60
8 30 3 10 1.099
Figure number of number of block size MSE
observations used btocks
9 51 1 51 3.7
10 30 1 30 3.81
N 30 2 15 4,872
12 30 3 10 4,115

Example 5: (Sampling of a Riccati Matrix)

This example shows the evolution of the Riccati matrix Rk for the following
systems parameters: m=1,n=2,p =1

0 1 (2 1 {0
1

e I N A I ECEN RN ) B S AT

Figures 13-15 display the components of Rk using the two sweep method as well
as the sampled values using the FFT method. Note that the FFT method gives the

same values as the recursive method at the sampled instants.
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Conclusions

Fast nonrecursive algorithms for solving the discrete time fixed interval
smoothing problem have been presented along with extensions to determine
samples of the associated Riccati matrices at fixed times. Both algorithms
have proven to be useful in implementing a block recursive filter to process
data in batches.

The advantage of these algorithms does not merely lie in a reduction of
the computational complexity compared to more conventional approaches. Their
nonrecursive structure allows parallel architectures and the use of FFT
firmware which results in faster execution times, and possibly a reduction

in the accumulated roundoff error.
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APPENDIX A

A.1 A Technical Lemma:

Lemma (Change of Indices of Summation over a Rectangular Grid):

j2 12 i2+j]-1 Q-i] j2+i]-1 l-i] 12+j2 j2
(A1) ¥ Ja.. = ) Y@, s o5t ) oa, . ot ) oA, . .
provided (jz-j]) 2 (iz-i]), where 2 = i+j. J J
Proof For simplicity let i = i-i] and j = j-j]. N - i+jen
2
Then by assumption j, 2 i,. Let & = i+j. SSSS
(See Figure 16). R N, ;
N : 1
Then :
|
for 2 < i, 0<sjist 1.‘] i
for i, <2<j, @ Riycicl
Figure 16

for £ 2 j, N o PRS- P
describes the range for j. Note that in the special case 12 = 12 the middle
formula is redundant. We now have to find the corresponding limits in terms
of i,j and £ = i+j. Since & = &f11+j1, or & = Q-i]-j1 these conditions become:
For z-i]-j] s iz-i] : 0<g j-j] < z-i]-j]

For 12-11 < l-i]-j1 < jz-j] : 2-11-j]-(12-i]) S J=jy s R-i]-j]
For 2-1,-3; 2 J,-J; : 2-19-3-(i,-17) < J-3y € Jp-J,

This can be simplified to:

For 2 < j,+i, : Jysds 2-1,
For i2+j] s < j2+i] : 2-12 <J s 1-1]
For £ 2 j,+i, -l 2,

Again, if iz-i] = jz-j], the middle formula is redundant. This proves the

P Y




result and also its following corrocllary:

Corrollary: if iz-i] = jz-j], then

2 1 Wit 1y ity 3
(A2) ) Yoa,. = ¥ Yoa, oo+ ¥ I a, ;.
R I N I 1 TR S RS L I SR PR i

A.2 Initial Conditions:

Lemma: 1 _ ,.T 1
— MeoF A *
(A3) . i-1
1
A= AL+ f + Y0 m o P(A, )
2k i+ j= 1{2_1 - q i3 J+k+1 k+J

Proof: The case i=1 follows from (4.2). Then use induction. For i=2 we

obtain from (4.2):

+ PIAy

2
=k+1 k

2 T
A= AA e tf

) T.1 2
= Ajh kel ¥ P1A1 ko2 ¥ P1Tkar * B

which is the claim for i=2, Now assume the result is correct for i. Then

from (4.2) we find

T i i+]

i+]
A M1 A1+1 ka1 * i

_k —P

By the induction hypothesis we can replace l;+]. It suffices to show that

—
a—d
N g e

; (Al . + £1-341
P P R s I

Now

© e e e
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. i-1( -1 .
T,1 _ alral i [ gi-d _
Pidear = PilAjrpep * Frn J.Z] UFI'I i ]“\-J Mekez * Fajall =
. i-1( i
- pT,T N ! T\, T
= Pilfide2 * Pifiar t J.Z,. ey ](Ai-j)‘k+J+2 fera))

?
©

. i i ..
TiaT i T T i=j+]
(A +f )+ ) m P lR: 1A + f, 5
iV i17k+2 k+1 je2 le=i-341 Lii-3+17j+k+1 k+3j

i
It 0t e

i
THAT i+1-j
[_.n PHAH] -j J+k+] fk+\] ] ’

which had to be shown.
i-1

With the convention II P 8 I, we can write (A3) for k=0 as
'Q,_
. i=1 ..
i TinT i-j
A= L | T P Ay L)
=0 JOLL"!J ]IJJ” J

Now we can use (4.7) and (4.10) to obtain
. -1 1
T|[aT T gl
M= T mop {A. (KT { + C; .R (z } )}
=0 j=0[2_1 J ~] 1-) J Y+k 1-J k J Y+k
Using (4.13) and (4.14) this gives

i=1 y+] i

E.pléo ) jzo kZ] = Dy K yeyek * ZO Ci-iR 2y

In order to collect terms in X, we have to change indices. Use (A1) and

the convention

a,. =0
2=y+] od

to arrive at (j] =1, j2 = v+, i] = 0, 12 = j-1)




(A4)

or using (4.4)

(Note: Hg

Let

where

of tne form

(AS)

where

On the other hand, from the initial condition we know that

= 0 for the smoothing probliem.)

These definitions allow us to write out equations for x_Y+]...xo, which in

turn yield X5 uniquely. Then we can combine this with (A4) to obtain a system

Y i 2
mpAl= 7 ¥ -0

%=1 i iy T ik ey
)
+ - D, X
=741 k=pd1oi KKy
y+i Y+1
+ = Dilpk, KXy

L=y+1 k=2+1-i

Xo = Qodg * ¥g
Pyx y+1
ag = 0 | - ;'
20 0 2 00
PYXO

A ST Ty -l s s
S = d1ag(P.|...PY)Q0 d1ag(P]...Py),

BT

-1
RIS




(%
kZ] Di sk, k * Sie iflgegi
(A6) 6, =
: 2 . .
y D, + s, ify>2>i
| k=2+1-1 T-2+k,k oL
)
D, for 2 < i
i-2+4k,k+y =
(A7) SRR R
i,8
L 0 for 2 > i
and the elements of 2' are given by
ai
(A8) 2, = X Ck JR z + [Suolk
If we define
B
D, if 1< <i
24k, k - =
k=1 TR
Tig =1
i, .
. QE] ik, k ify>e>i
then (A6) becomes
0 _
(A9) G0 = Ti,e * Si,
and
Tivt,041 = Tiyn ¥ Djay o

Similarly we recognize from (4.16) and (4.17) that

G; , = -A,, . for & ¢ i
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A.3 Terminal Condition

Before writing out the terminal equations, some preliminaries are nec.=d.

Lemma:

P .
(A10) Mg = AN In e aD)!

A
it A+t

Proof: The case i=0 follows from (4.2) when k=N. Suppose the result holds

for i. Then (4.2) and the induction hypothesis result in

T
M-gien) T A2 i

i . . .
.ZO(AT)1+]'JfN-j + (AT)1+2)\
J=

i+] . . .
= XO(AT)]+]-JfN_J + (AT)1+2>\
J:

Let

[o P]\O ‘l r. C
(A11) A= l \Pw and B = l ‘.0_

RS _]

Now we can derive equations for Xy in terms of Xn_ge From (4.1) we get

AN-i T ’)‘EN-M * By
(A10 i .
~ = Tyi-3 T+l
(A12) = Axy_ioq * B(jZO(A ) g R T )
(4.9) g .
: 7 i=jTp=1 = aTyi+]
= Axy_qoy * BJ_Z (AT) UCTR (zy 5 - Cxyy) * BOAT) g

For convenience define

(A13) v

= (B(AN' = kA"
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and
1

(A14) o= v R,
where the subscript m indicates the block of the last m rows.

Note that Vi is a matrix of order mxn which can be computed recursively.
Taking advantage of the structure of A and B no more than nem operations are

necessary for each Vi.
Thus using (A13), (A14) and (4.6), equation (A12) gives the relation for

the last m components XN-i of XN 8s

i i

Loti-tneg T L es L Oy

v

(AT5) xy_y = jé]'t\sz"N-i-l-yﬂz * i

Before collecting terms, let k = -j-y, then

i

AP N-t-1ayn * L Wy g2y g -

Xn s
N=-1 €0

2=1
(A16)

k==T-y z=1wi+k+vckxN+k+z * V2N

Now apply the index transformation (A1) with j] =1, j2 =y, i] = —i~y,

i2 = -y. This yields an expression of the form (k = j-2)

VR FY P - jHity 0
M7y ¥ ya, , = % a. + a. + } a.
R B RV I AL B z=§+y Il e liay gefay IR
Also, since K§+] = -1, we have
_ v
(A18) XN * lz]AlxN—i-l-y+2 = QZ]AQXN-i-I-y+£ .

If we let j = 2~i-1 this becomes

Y+]K y= 1
(A19) PR TR jj;iﬂj+i+1xN-Y+j

P‘Y{M",ﬁ LR P

L
s

T T S s e A

- .
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Now we can use (A17) and (A19) to rewrite (A16):

1
0= ) A, .. L+ Y W Lz
jeoi AFPHUIN-y4 o2y T-3ON-J

( 0 j+i B

) Uﬂz-i JLZ] i3l Ny

(AZO) Y- i j+i _
C

+ Y Y W, X .+
J 1 2'__\] 1+3-272 N-'Y+J

+ C,x -W + V.
joyitl 95 1+J -274°N- y+iJ 1+1—N+1

This holds for 0 < i < y-1. After collecting terms involving xN-y+j

J 21 on the left hand side, we obtain a system of equations of the form

0.t Tt | ot

(A21) TX =Tx"+1z
where
: 2y
N-y+ . N-2y+] R )
%t = . t. : R 5t - ( : and
. At
XN l_xN-Y Lz
At . _
(R22) 2.1 " Z WioZneg ¥ Viarder » T2 0000 v
and the matrix TO is given by
_ _
'Ai+j + lzj ”i-1+j-zcz , iflsjgy-if
(A23) T1,j =

if v=i+2 s s v

{ W, 7.. C
i i=14]- i
| 25 J=278

This can be defined recursively, too. Let




. s s e e 8+ e e Bt st~ e . b e e a as =

- A9 -

( 1‘+%'-1
W, . C, »1<]s<yit
9=j i+j-2-172
(A24) Fii =)
§ W 1.5 ,Ch » Y-1¥2 < j <y
Q:j 1-]+J-RL L
Then for 1 < j g y-i+l
i+j-1 _ 3
. .= L. = W. + F.
F1+1,J—1 g=3-1 ”1+3-2-1Cz w1 j-1 F],J
Similarly for j > y-i+l:
F. .y = . . C. = W.C + F.
i+1,j-1 z=§-1 Wi 145-200 = WiC50 * Fy 5
Consequently F satisfies the recursion
(A25) Firt,g-1 = Figs * Wil

in both cases. Thus, after F and F_i y have been computed, the recursion is

k]

1,J
initialized, and

(A26) T, . =

0 f—Ki+j+F..if1sj5y-i+1
F1 otherwise

To find T] change the index on the right hand side from j to k-y. Then we

get
g X K-y+i B
c 1w X - W. C x » 0 <1 ¢ v-1
K=y-i T+1-y+k"N-2y+k k=15i4y 251 i+k-y-27"2"N-2v+k

From this we see that for 1 s 1 < v

0 if k < y=i+

A if k = y-i+l

1T .

(R27) Tik ® k-y+i-1 o ‘

Ki-y+k - 221 Wistekoy-gCe 1T k> y-i41




For k > y-i+1 define

k-y+i-1 _
T. , = W. C
i,k 2= i=-1+k-y-27%
Then clearly
(A28) Tik ™ Tio1,ke1

and we only need to compute T& y for i 2 2, i.e.,

i-1
(A29) Tijy © ZZ] Wio1-9ly

T . T e e e AL Rl b

AP e s

R -

Tiw v
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APPENDIX B

INVERSION OF BLOCK CIRCULANT MATRICES

A matrix of the form

Hn-1

Hy Hy ...
Hy-1
(B1) Ho= |-
. Hy
H HN-1

HO_

-

where Hi itself is a matrix of dimension dxd, is called a block circulant
matrix with dimension N and base dimension d.

Consider the first column of blocks Hy, Hy_ys ... Hy, and form sequences
of length N by taking the elements in the position (i,j) of each matrix, i.e.,
Ho(i,j), HN_](i,j), cee H](i,j)).

Then the inverse of Hc can be computed efficiently in the following manner:
Step 1: Take the DFT of the sequences Ho(i,j), HN_](i,j) cee H](i,j) for each
{i,j) and denote those transforms by ﬁo(i,j), ﬁN_](f,j), ces ﬁ1(i,j).

Step 2: Compute the inverses
a1

B, = Hk

K , for k =0, ... N-1

Step 3: Take the inverse DFT of the sequences
By(1:3)s By q(153)s +o. By(143)
and denote the result by

Bo(inj); BN_](i!j)s B](i’j)
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which gives the first column of blocks of H;].

Step 4: Circulate the blocks Bk to obtain the matrix B = H;] given by

— —
BOQ e By
BN-1
B =
By
|5 By-180 |

Proof: Since HC is a NxN block circulant matrix with base d, HC can be

expressed as a sum of Kronecker product of matrices as

N-1
(B3) He = Z C, ® Hy
[ [‘0 1\ ro 0 17
_ _ 2
(84) CO = \ ) C] = \ 'I 3 sesy CN_'I - \ \\

1] 1 0 L 10

where each Ck is NxN and each Hk is dxd. Define
HC = F Hc F*

(B5)

N=1
(F ® Id)(kzo ¢, ® HIF* ® 1)

where F is the NxN unitary discrete Fourier transform matrix. Then by properties

of the cross project of matrices, we get

N-1
(B6) H. = kZO (F @ I)(C, ® HIF* ® 1)
N-1
(87) = kZO (FC, ® HIF* ® 1)
N-1
(88) =

kgo (FC F*) ® H,




Since Ck is a circulant matrix with 1's and zeros, the product F C] F*

is simply a diagonal matrix, Dk’ i.e.,

| - 4, (1)
| (89) D, = FC F= '
0 .
' | dk(N-l)J
! .
: . 2m
' where dk(z) - eI N K for k,2 = 0,1, ... N-1
(810)
~ N‘]
Hence H_ = kZO D, ® He (B11)

A

HC is a block diagonal matrix with the diagonal blocks as ﬁl’ i.e.,
N N-1 )
H, = d (&M, .
L5 K k
P Substituting (B10) results in

1 A N-] -3 Q
Ao id) = 7 eI N M (4,9)
k=0

Since ﬁc is a block diagonal matrix, the inverse of ﬁc is simply the inverse

of each block matrix on the main diagonal.

In order to get B, the inverse of Hc’ the inverse DFT is required.

Note that
()™ = (F Py
AN TRE S
H' = PR R = FRCN (R
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The inverse of a block circulant matrix is also a block circulant matrix.

This can be shown as follows:

n N-1 A
B can be expressed as B= ] E ® B
k=0
where 1 0 w0 0 0« !
[o 1 l—o 1 0. ]
Bo=l: 0 (BT r 0 [ Byt o
Lo . | 0 1

Then B

N-1 A
! = (@ (1 B @ BIF @ 1y

N-1 ~
kZO (F*E, F) ® B,

It is found that F* Ey F is a circulant matrix. Therefore (F* EkF) ® ﬁk
is a block circulant matrix. Because summation of block circulant matrices

i : gives a block circulant; B is a block circulant matrix.
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